A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination.

نویسندگان

  • Carl L Hansen
  • Scott Classen
  • James M Berger
  • Stephen R Quake
چکیده

The unprecedented economies of scale and unique mass transport properties of microfluidic devices made them viable nano-volume protein crystallization screening platforms. However, realizing the full potential of microfluidic crystallization requires complementary technologies for crystal optimization and harvesting. In this paper, we report a microfluidic device which provides a link between chip-based nanoliter volume crystallization screening and structure analysis through "kinetic optimization" of crystallization reactions and in situ structure determination. Kinetic optimization through systematic variation of reactor geometry and actuation of micromechanical valves is used to screen a large ensemble of kinetic trajectories that are not practical with conventional techniques. Using this device, we demonstrate control over crystal quality, reliable scale-up from nanoliter volume reactions, facile harvesting and cryoprotectant screening, and protein structure determination at atomic resolution from data collected in-chip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From screen to structure with a harvestable microfluidic device

Advances in automation have facilitated the widespread adoption of high-throughput vapour-diffusion methods for initial crystallization screening. However, for many proteins, screening thousands of crystallization conditions fails to yield crystals of sufficient quality for structural characterization. Here, the rates of crystal identification for thaumatin, catalase and myoglobin using microfl...

متن کامل

Microfluidic Tools to Investigate Protein Crystallization

Microfluidic Tools to Investigate Protein Crystallization A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University, Waltham, Massachusetts by Michael Heymann There is no guarantee that a given protein has a crystalline phase, but even existence of an equilibrium crystalline phase is not sufficient for a crystal to form because the transformation...

متن کامل

A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction.

We report a microfluidic approach for de novo protein structure determination via crystallization screening and optimization, as well as on-chip X-ray diffraction data collection. The structure of phosphonoacetate hydrolase (PhnA) has been solved to 2.11 Åvia on-chip collection of anomalous data that has an order of magnitude lower mosaicity than what is typical for traditional structure determ...

متن کامل

X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization.

Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In p...

متن کامل

A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion.

Producing robust and scalable fluid metering in a microfluidic device is a challenging problem. We developed a scheme for metering fluids on the picoliter scale that is scalable to highly integrated parallel architectures and is independent of the properties of the working fluid. We demonstrated the power of this method by fabricating and testing a microfluidic chip for rapid screening of prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 10  شماره 

صفحات  -

تاریخ انتشار 2006